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Abstract. We present a new convergence result for the cone partitioning algorithm with a pureω-
subdivision strategy, for the minimization of a quasiconcave function over a polytope. It is shown
that the algorithm is finite whenε-optimal solution withε > 0 are looked for, and that any cluster
point of the points generated by the algorithm is an optimal solution in the caseε = 0. This result
improves on the one given previously by the authors, its proof is simpler and relies more directly on
a new class of hyperplanes and its associated simplicial lower bound.
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1. Introduction

We consider the following quasiconcave programming problem

(CP ) min{f (x) | x ∈ P }
wheref is a quasiconcave continuous function onRn andP is a full dimensional
polytope ofRn .

Tuy [11] proposed in 1964 a first method, a cone covering algorithm, to solve
the concave programming problem. Unfortunately this method was shown to cycle
on some problems by Zwart [14] (recently Meyer [9] has shown that this cycling
does not prevent the algorithm from finding an optimal solution of the problem).
Independently, Bali [1] and Zwart [15] proposed to consider partitioning of cones
instead of covering. The two algorithms differ from each other only whenε-optimal
solution (ε > 0) are looked for, but are identical when optimal solution (i.e., with
ε = 0) are sought. In particular, they both make use ofω-subdivisions, i.e., cones
are subdivided with respect to a pointω of the polytope that is a byproduct of the
deletion test. In 1981, Jacobsen [3] proposed a proof of Bali’s algorithm conver-
gence, but unfortunately this proof used a separation property which may not hold
in the general case (see Tuy [12]).

In the meantime, the difficulty in proving the convergence of the conical al-
gorithms was alleviated by modifying the subdivision process. In 1980, Thoai
and Tuy [10] proposed to replaceω-subdivisions by bisections, and showed the
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convergence of the resulting algorithm. However, this strategy deteriorates the
computational performances, due to the fact that the bisection process does not
make use of the structure of the problem. This conflict between efficiency and
convergence has been partially solved with the concept ofnormal subdivisionin-
troduced by Tuy [13], which consists in usingω-subdivisions most of the time, and
bisections occasionally to ensure the convergence. A new proof of the convergence
of the cone partitioning algorithm with a pureω-subdivision strategy was first
proposed in [4]. Since then, the nature of the hyperplane that plays a key role in the
proof has been better understood and it has yield to a new simplicial lower bound
that dominates the classical one (see Jaumard and Meyer [5] and Meyer [8]). In
this paper, we give a stronger convergence result than in [4] and propose a shorter
proof that takes into account the recent developments about the hyperplane.

The reader is referred to the book of Horst and Tuy [2] for more details on
conical algorithms and for a description of other methods for solving problem (CP).

The paper is organized as follows. In Section 2, the basic operations for the cone
partitioning algorithm are recalled. In Section 3, the algorithm is described. The
convergence is discussed in Section 4. Conclusions are drawn in the last section.

2. Basic operations

In this section, we discuss the basic operations needed to define the algorithm,
namely the construction of the initial conical partition (Section 2.1), the com-
putation ofγ -extensions (Section 2.2), the deletion test (Section 2.3) and theω-
subdivisions (Section 2.4).

2.1. INITIAL PARTITION

The initialization part consists in rewriting the problem (CP) in the following form

(CP ′) min{f (x) | x ∈ K0 ∩ P ′}
wheref is the quasiconcave function,K0 is a polyhedral cone vertexed atO and
with exactlyn independent edges, andP ′ is a polyhedron ofRn containingO in
its interior and such thatK0 ∩ P ′ is bounded.
This can be done in several ways:
1. Choose a non-degenerated vertexv0 of P (assuming that there exists one) and

perform a change of variable which transformsv0 into O. The coneK0 is
defined by the constraints ofP binding atv0 and the polyhedronP ′ is obtained
from P by deleting those constraints.

2. Perform a change of variable in such a way thatO is an interior point ofP .
Then construct a partition ofRn into n + 1 cones (see, e.g., Horst and Tuy
[2]). We obtainn + 1 problems of the form(CP ′) with P ′ = P and where
K0 is successively each of then+ 1 cones (these problems are usually solved
simultaneously: see for example [4]).
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In the first case, all optimal solutions of problem(CP ′) are also optimal solu-
tions of problem(CP ), while in the second case optimal solutions of at least one
problem(CP ′) are optimal solutions of(CP ).
From now on, we assume thatP ′ = {x ∈ Rn |A′x ≤ b′}. Moreover, we will denote
byK = cone{u1, . . . , un} the polyhedral cone of originO whose directions are the
n linearly independent vectorsu1, . . . , un.

2.2. γ -EXTENSIONS

In order to define finiteγ -extensions along the directions on whichf is increasing,
we need to find a bounded convex setC containingO and such that for any cone
K ⊆ K0, the hyperplane going through the intersection points of the edges ofK

with the boundary of this set does not intersectK ∩P ′. A simplex satisfying those
conditions can be easily constructed. Assume thatK0 is spanned by the vectors
u01, u02, . . . , u0n. Solve max{∑n

j=1 λj |
∑n

j=1 λju
0j ∈ K0 ∩ P ′} and let3∗ be the

optimal value. Then define the simplex as{x ∈ Rn | x =∑n
j=1 λju

0j ,
∑n

j=1 λj ≤
3,λ ≥ 0} where3 > 3∗.

We are now able to define theγ -extensions: Letu 6= 0 be a vector ofRn and
γ be a number satisfyingγ ≤ f (O). Defineθ = max{α | f (αu) ≥ γ, αu ∈
C, α ≥ 0}. The pointy = θu is called theγ -extension (ofO) alongu (the notion
of γ -extension was first introduced by Tuy [11], see, e.g., Horst and Tuy [2]).

Note that ifγ = f (O) andf is decreasing alongu, theγ -extension alongu is
O. In this paper,γ will always satisfy the conditionγ ≤ min{f (λu)|λu ∈ P ′, λ ≥
0} (recall thatO is an interior point ofP ′), which ensures that theγ -extension will
always be distinct fromO.

2.3. DELETION TEST

LetK = cone{u1, u2, . . . , un} be a cone andγ ≤ f (O) be a number such that the
γ -extensionsyj = θjuj alonguj , j = 1,2, . . . , n are distinct fromO. Consider
the following linear problem

LP(P ′,K, γ ) max
n∑
j=1

λj

s.t.

 A′
n∑
j=1

λjy
j ≤ b′

λ ≥ 0.

Let ρ̃ be its optimal value. Then if̃ρ ≤ 1, we havex ∈ conv{O, y1, . . . , yn},
which by quasiconcavity off implies thatf (x) ≥ γ for all x in K ∩ P ′.

In particular, ifγ is the best feasible value for the problem(CP ′) obtained so
far, the coneK can be eliminated from further consideration since no better feasible
solution can be found in it.
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This deletion test differs from the one originally proposed by Tuy [11] in the
addition of the constraintλ ≥ 0 in the definition ofLP(P ′,K, γ ).

Given an optimal solutioñλ of problemLP(P ′,K, γ ), we return to thex-space
by defining

ω̃ =
n∑
j=1

λ̃j y
j . (1)

This point ofK ∩P ′ is used in the subdivision process (see Section 2.4) and in the
update of the best known solution (see Section 3). We also define the hyperplane
H̃ = {x ∈ Rn | x =∑n

j=1 λjy
j ,
∑n

j=1 λj = ρ̃} and note bỹαx = 1 its equation.
Now, following [5], consider the dual ofLP(P ′,K, γ ):

DLP(P ′,K, γ ) min
m∑
i=1

µib
′
i

s.t.


m∑
i=1

µia
′iyj ≥ 1, j = 1, . . . , n

µ ≥ 0

wherea
′i denotes theith row ofA′, (i = 1, . . . ,m).

Due to the results in linear programming duality (see, e.g., Luenberger [7]), its
optimal value is the same than forLP(P ′,K, γ ), that isρ̃. Let µ̂ be an optimal
solution. Define

α̂ = 1

ρ̃

m∑
i=1

µ̂ia
′i (2)

and letĤ be the hyperplane of equationα̂x = 1. We have the following properties.

PROPOSITION 1.Let λ̃ be an optimal solution of problemLP(P ′,K, γ ). Then

α̂(ρ̃yj ) ≥ 1, j = 1, . . . , n

with equality for allj such that̃λj > 0.

Proof. The inequalities are a direct consequence of (2) and of the feasibility of
µ̂. Moreover, using the complementary slackness conditions, we have

λ̃j

(
m∑
i=1

µ̂ia
′iyj − 1

)
= 0, j = 1, . . . , n

which concludes the proof. 2
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PROPOSITION 2 [5, Proposition 1].The hyperplaneĤ supports the polyhedron
P ′ at point ω̃.

Proof.Let x ∈ P ′. Thena
′ix ≤ b′i for i = 1, . . . ,m. Multiplying by µ̂i (which

are nonnegative) and summing, we obtain

m∑
i=1

µ̂ia
′ix ≤

m∑
i=1

µ̂ib
′
i = ρ̃.

Using (2) we get̂αx ≤ 1, which shows thatP ′ is included in the halfspace{x ∈
R
n | α̂x ≤ 1}. Now by Proposition 1,̃λj α̂(ρ̃yj ) = λ̃j for j = 1, . . . , n. Since∑n
j=1 λ̃j = ρ̃ and by (1), we deducêαω̃ = 1. 2

COROLLARY 3. There existsM > 0 such that‖α̂‖ ≤ M.
Proof. Since Ĥ = {x ∈ R

n | α̂x = 1} supportsP ′, the distance
d(O, Ĥ ) = 1/‖α̂‖ from O to the hyperplaneĤ is bounded from below by the
distanced(O, δP ′) fromO to the boundary ofP ′. This distance is nonnull because
O is an interior point ofP ′. ChooseM = 1/d(O, δP ′). 2

2.4. ω-SUBDIVISION

Let K = cone{y1, . . . , yn} be a cone to be subdivided and letω̃ be the point
associated withK obtained after the application of the deletion test:

ω̃ =
n∑
j=1

λ̃j y
j , λ̃ ≥ 0.

Let J = {j | λ̃j > 0}. For eachj ∈ J define the coneKj as the coneK in which
the j th edge is replaced by the halfline[Oω̃). The conesKj (j ∈ J ) are called
subconesof K. It is easy to see that they form a partition of the coneK (see, for
example, Horst and Tuy [2]). This subdivision is referred to as anω-subdivision.

Note thatα̂yj = 1/ρ̃ for all j in J by Proposition 1, wherêα and ρ̃ were
defined in the previous subsection.

3. Cone partitioning algorithm

We now present a cone partitioning algorithm that is very close to Bali’s modifica-
tion [1] of the original algorithm of Tuy [11]. We show in the next section that this
algorithm provides anε-optimal solution of problem(CP ′) for anyε ≥ 0, i.e., a
pointx ∈ K0∩P ′ such thatf (x) ≤ f ∗ + ε wheref ∗ is the exact optimal value of
problem(CP ′).

CPω algorithm (cone partitioning viaω-subdivision)
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Step 1 (initialization):initialize the incumbent valuef and solutionx with the
best point amongO and the intersection points of the edges ofK0 with the
boundaryδP ′ of P ′. SolveLP(P ′,K0, f − ε) obtaining an optimal value
ρ̃(K0) and a pointω̃(K0). If ρ̃(K0) ≤ 1, stop:x is anε-optimal solution of
problem(CP ′). Otherwise, setL = {K0}.

Step 2 (subdivision):letK∗ ∈ arg max{ρ̃(K) |K ∈ L}. SubdivideK∗ via the point
ω̃(K∗) as indicated in Section 2.4. LetP be the set of subcones.

Step 3 (deletion test):for each coneK ∈ P , solveLP(P ′,K, f − ε) obtaining an
optimal valueρ̃(K) and a pointω̃(K). If ρ̃(K) > 1, addK to L.

Step 4 (updating the incumbent):if for someK ∈ P , f (ω̃(K)) < f then setf ←
f (ω̃(K)); x ← ω̃(K).

Step 5 (optimality test):setL ← L\{K∗}. If L is empty, stop:x is anε-optimal
solution of problem(CP ′). Otherwise return to Step 2.

The main difference with Bali’s algorithm is that at each iteration we only sub-
divide the cone with largest̃ρ instead of all cones of theL list. Bali’s algorithm
itself differs from Tuy’s covering algorithm by the addition of the constraintλ ≥ 0
in the linear programLP(P ′,K, γ ).

4. Convergence

In [12], Tuy has shown that the boundedness of the sequence of generated vectors
α̃ would imply the convergence of algorithm CPω. Unfortunately, the hyperplane
H̃ may tend to contain entirelyK ∩P ′ asK tends to a degenerated cone, in which
case‖α̃‖ would not be bounded (see Jaumard and Meyer [5]). In this section, we
show the convergence of algorithm CPω by reasoning on vector̂α instead ofα̃.

Before stating the main Theorem, we prove the following result.

PROPOSITION 4. LetK = cone{y1, . . . , yn} be a cone whereyj , j = 1, . . . , n
are γ -extensions for some valueγ . Let ω̃ be the point ofK ∩ P ′ and Ĥ = {x ∈
R
n | α̂x = 1} be the hyperplane supportingP ′ that correspond respectively to an

optimal solution of problemsLP(P ′,K, γ ) andDLP(P ′,K, γ ), and finally letρ̃
be the common optimal value of these two problems.

LetK ′ = cone{y ′1, . . . , y ′n}, γ ′, ω̃′, Ĥ ′ = {x ∈ Rn | α̂′x = 1} andρ̃ ′ be defined
similarly.

If K ′ ⊆ K andγ ′ ≤ γ , then

1≥ α̂ω̃′ ≥ ρ̃
′

ρ̃
.

Proof.Let ŷj (respectivelyŷ
′j ) be the intersection point of thej th edge ofK (re-

spectively ofK ′) (j = 1,2, . . . , n)with the hyperplaneĤy = {x ∈ Rn |α̂x = 1/ρ̃}.
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Sinceα̂yj ≥ 1

ρ̃
= α̂ŷj , j = 1,2, . . . , n by Proposition 1 and definition of thêyj ,

we haveŷj ∈ [Oyj ] for j = 1,2, . . . , n. Hence,f (ŷj ) ≥ min{f (O), f (yj )} ≥ γ
by quasiconcavity off , and ŷj ∈ C for j = 1,2, . . . , n. By definition ŷ

′j ∈
Ĥy ∩K ′ ⊆ Ĥy ∩K = conv{ŷ1, ŷ2, . . . , ŷn}, hencef (ŷ

′j ) ≥ minx∈Ĥy∩K f (x) ≥ γ
andŷ

′j ∈ C for j = 1,2, . . . , n.
Recall thaty

′j is the γ ′-extension along thej th edge ofK ′. We distinguish
between two cases depending on whetherf (y

′j ) = γ ′ or not. In the first case,
sincef (ŷ

′j ) ≥ γ ≥ γ ′, there existsβj ≥ 1 such thaty
′j = βj ŷ ′j . In the second

case,y
′j ∈ δC andŷ

′j ∈ C, hence again there existsβj ≥ 1 such thaty
′j = βj ŷ ′j .

By definition ofω̃′, we have

ω̃′ =
n∑
j=1

λ̃′jy
′j ,

n∑
j=1

λ̃′j = ρ̃ ′, λ̃′ ≥ 0

whereλ̃′ is an optimal solution ofLP(P ′,K ′, γ ′). It follows that

ω̃′ =
n∑
j=1

λ̃′jβj ŷ
′j with βj ≥ 1 for j = 1,2, . . . , n.

Sinceα̂ŷ
′j = 1/ρ̃ by definition for allj , it follows that

α̂ω̃′ = 1

ρ̃

n∑
j=1

λ̃′jβj ≥
ρ̃ ′

ρ̃
.

Finally, since the hyperplanêH = {x ∈ Rn | α̂x = 1} supportsP ′ andω̃′ ∈ P ′, we
have alsôαω̃′ ≤ 1. 2

Our main result is the following.

THEOREM 5. The CPωalgorithm is correct and can be infinite only ifε = 0. In
this latter case, any cluster pointω of the sequence{ω̃} generated by the algorithm
is an optimal solution of problem(CP ′).

Note that this result is stronger than that given in [4], where it was shown thatat
leastone cluster point of the sequence{ω̃} is an optimal solution (in fact this result
was expressed by saying that every cluster point of the sequence{x} is a global
minimizer).

In order to prove Theorem 5, denote byKk the cone selected at Step 2 of itera-
tion k and letρ̃k = ρ̃(Kk) andω̃k = ω̃(Kk). In addition, letĤ k = Ĥ (Kk) = {x ∈
R
n | α̂kx = 1} be the hyperplane supportingP ′ associated withKk, γ k be the value

of the best known solution used to compute theγ -extensionsyjk, j = 1, . . . , n
that define the linear program solved for coneKk , andf

k = f (xk) the value of the
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best known solution at iterationk. If the algorithm stops at iterationN , xN is an
ε-optimal solution of problem(CP ′) sincef (x) ≥ f N − ε for all x in K0 ∩ P ′.

Hence, assume that the algorithm is infinite. Sinceω̃k ∈ K0 ∩ P ′, yjk ∈ C
for j = 1,2, . . . , n andO ∈ intP ′, the sequences{ω̃k}, {yjk}k, j = 1,2, . . . , n
and {α̂k} are bounded (for the boundedness of{α̂k}, see Corollary 3). Since the

sequence{f k} is nonincreasing and bounded from below by minx∈K0∩P ′ f (x), it
converges to a limitf

∗
. On the other hand, taking into account the selection rule of

Step 2 and that̃ρ does not increase when going from a cone to one of its subcones
(see Proposition 4), we obtain that the sequence{ρ̃k} is nonincreasing. Moreover
as it is bounded from below by 1 (because cones satisfyingρ̃k ≤ 1 are eliminated
at Step 4), it goes to a limitρ∗ ≥ 1.

PROPOSITION 6.The CPωalgorithm can be infinite only ifε = 0. Furthermore
we haveρ∗ = 1 andf (ω) = f ∗.

Proof. Let {ω̃kr } be a subsequence of{ω̃k} converging toω. Since each cone is
subdivided into a finite number of subcones, there is at least one sequence{Kq} of
nested cones (i.e., satisfyingKq+1 ⊆ Kq for all q) such that{q} is a subsequence of
{kr}. Complete{q} to obtain a sequence{h} such thatKh+1 is a subcone ofKh for
all h. Then{q} is a subsequence{hs} of {h} andω = limhs→∞ ω̃hs . Denote byih the
index of the edge ofKh replaced by the halfline passing throughω̃h in the subdivi-
sion procedure. Note thatα̂hρ̃hyihh = 1 by definition of the subdivision procedure
and Proposition 1. Leti0 be an integer such thatihs = i0 for infinitely manyhs . Let

{ht} = {h | ih = i0}. We havef (yi0ht+1) = γ ht+1 − ε ≤ f ht − ε or yi0ht+1 ∈ δC,
andyi0ht+1 = θt ω̃ht with θt ≥ 1 for all t . Moreover,α̂ht+1ρ̃ht+1yi0ht+1 = 1, i.e.,

α̂ht+1ρ̃ht+1θt ω̃
ht = 1. (3)

Let {tu} be a subsequence of{t} such thatω̃htu → ω, θtu → θ andα̂htu+1 → α̂ (i.e.,
{htu} is a subsequence of{hs}).

By Proposition 4, sinceKhtu ⊆ Khtu−1+1, we have

1≥ α̂htu−1+1ω̃htu ≥ ρ̃htu

ρ̃
htu−1+1

. (4)

Taking the limit in (3) and (4), and sincẽρh → ρ∗, we obtainα̂ρ∗θω = 1 = α̂ω
which shows thatρ∗θ = 1. Sinceρ∗ andθ are both greater than or equal to 1, we
deduceρ∗ = θ = 1. By continuity off , we have then thatf (ω) ≤ f ∗ − ε (note
thatω ∈ δC is impossible by definition of the convex setC). But we have also

f (ω̃h) ≥ f h, which impliesf (ω) ≥ f ∗. This is possible only ifε = 0, in which
casef (ω) = f ∗. 2

We are now able to prove Theorem 5.
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Proof of Theorem 5.We have already shown that if the algorithm is infinite, at
least an infinite sequence of cones is generated by the partitioning procedure and
that this is possible only ifε = 0. Moreover, the sequence{ρ̃k} converges to 1 and

the sequence{f k} to f ∗ = f (x). It remains to show thatf
∗

is the optimal value of
problem(CP ′).

Assume by contradiction that there existsx′ ∈ K0 ∩ P ′ such thatf (x′) < f
∗
.

Let {Kkh} be a sequence of cones generated by the subdivision procedure, that
containx′ (note that there may be several such sequences ifx′ belongs to a face
of a cone). The sequence{Kkh} is infinite. Indeed, if it were finite, letKkN be the
last cone containingx′. There are two possibilities: eitherKkN is never selected
to be subdivided, in which casẽρk ≥ ρ̃kN > 1 for k ≥ kN , in contradiction
with the fact thatρ̃k tends to 1. OrKkN is eliminated, which implies thatf (x′) ≥
minx∈KkN∩P ′ f (x) ≥ f kN ≥ f ∗, in contradiction with the assumptionf (x′) < f ∗.

Let ŷ
′kh be the intersection ofOx′ with the hyperplaneĤ kh

y = {x ∈ Rn | α̂khx =
1/ρ̃kh}: thenf (ŷ

′kh) ≥ γ kh asŷ
′kh belongs toKkh ∩ Ĥ kh

y = conv{y1kh , . . . , ynkh }
whereyjkh , j = 1, . . . , n are theγ kh-extensions. Lety

′∗ be thef
∗
-extension ofx′

(note thaty
′∗ ∈ [Ox′] with x′ ∈ intC). Sincef (ŷ

′kh) ≥ γ kh ≥ f ∗ = f (y
′∗) >

f (x′) and by quasiconcavity off , we have‖x′‖ > ‖y ′∗‖ ≥ ‖ŷ ′kh‖. Moreover,
sincex′ ∈ Kkh ∩ P ′, we have‖x′‖ ≤ ρ̃kh‖ŷ ′kh‖. Hence,

ρ̃kh ≥ ‖x
′‖

‖ŷ ′kh‖ ≥
‖x′‖
‖y ′∗‖ > 1.

But {ρ̃kh} tends to 1 as a subsequence of{ρ̃k}, hence a contradiction. We conclude
that there cannot existx′ ∈ P ′ such thatf (x′) < f

∗
, and hence thatf

∗
is an

optimal value of problem(CP ′). 2

This convergence result can be easily extended to the branch-and-bound variant
of this algorithm (see [4]).

5. Conclusion

In this paper, we have given a simplified proof of the convergence of the cone
partitioning algorithm withω-subdivision. This new proof benefits from the insight
gained on a new class of hyperplanes and its associated cut/lower bound, developed
in an other paper [5]. It is shown that the cone partitioning algorithm is finite when
ε-optimal solution are looked for withε > 0, but only infinite convergence could
be shown in the case whereε = 0. No example is known in which the algorithm is
infinite, therefore the true status of the cone partitioning algorithm is still an open
question when an exact optimal solution is sought.

We heard recently about an independent proof of the result given in this paper
for the caseε > 0 by Locatelli [6].



416 B. JAUMARD AND CH. MEYER

Acknowledgments

Work of the first author was supported by FCAR (Fonds pour la Formation de
Chercheurs et l’Aide à la Recherche) grant 95-ER-1048 and by NSERC (Natural
Sciences and Engineering Research Council of Canada) grant GP0036426. Work
of the second author was supported by NSERC-network grant NET0200815.

References

1. Bali, S. (1973),Minimization of a Concave Function on a Bounded Convex Polyhedron, Ph.D.
Thesis, University of California at Los Angeles.

2. Horst, R. and Tuy, H. (1993),Global Optimization (Deterministic Approaches), 2nd edn.,
Springer Verlag, Berlin.

3. Jacobsen, S. E. (1981), Convergence of a Tuy-type algorithm for concave minimization subject
to linear constraints,Applied Mathematics and Optimization, 7: 1–9.

4. Jaumard, B. and Meyer, C., On the convergence of cone splitting algorithms withω-
subdivisions,Les Cahiers du GERAD G-96-36, July 1996 (revised February 1997), submitted
for publication.

5. Jaumard, B. and Meyer, C., The simplicial lower bound for conical algorithm revisited, to
appear inLes Cahiers du GERAD.

6. Locatelli, M. (1996), Finiteness of conical algorithms withω-subdivisions, Technical Report
no. 145-95, Univ. di Milano, Dip. Scienze dell’Informazione.

7. Luenberger, D.G. (1973),Linear and Nonlinear Programming, 2nd edn., Addison-Wesley
Publishing Company.

8. Meyer, C. (1996),Algorithmes coniques pour la minimisation quasiconcave, Ph.D. Thesis,
Ecole Polytechnique de Montréal.

9. Meyer, C., On Tuy’s 1964 cone splitting algorithm for concave minimization,Les Cahiers du
GERAD G-97-48, July 1997 (revised October 1997), to appear inFrom Local to Global Opti-
mization, proceeding of the workshop in honor of Professor Tuy’s 70th birthday (Linköping),
Kluwer Academic Publishers, Dordrecht/Boston/London.

10. Thoai, N.V. and Tuy, H. (1980), Convergent algorithms for minimizing a concave function,
Mathematics of Operations Research5: 556–566.

11. Tuy, H. (1964), Concave programming under linear constraints,Soviet Mathematics5: 1437–
1440.

12. Tuy, H. (1991), Normal conical algorithm for concave minimization over polytopes,Mathe-
matical Programming51: 229–245.

13. Tuy, H. (1991), Polyhedral annexation, dualization and dimension reduction technique in global
optimization,Journal of Global Optimization1: 229–244.

14. Zwart, P.B., (1973), Nonlinear programming: Counterexamples to two global optimization
algorithms,Operations Research21: 1260–1266.

15. Zwart, P.B. (1974), Global maximization of a convex function with linear inequality constraints,
Operations Research22: 602–609.


