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Abstract. We present a new convergence result for the cone partitioning algorithm with @pure
subdivision strategy, for the minimization of a quasiconcave function over a polytope. It is shown
that the algorithm is finite whes-optimal solution withe > 0 are looked for, and that any cluster
point of the points generated by the algorithm is an optimal solution in theecas®. This result
improves on the one given previously by the authors, its proof is simpler and relies more directly on
a new class of hyperplanes and its associated simplicial lower bound.
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1. Introduction

We consider the following quasiconcave programming problem
(CP) min{f(x)]|x e P}

where f is a quasiconcave continuous function®hand P is a full dimensional
polytope ofR".

Tuy [11] proposed in 1964 a first method, a cone covering algorithm, to solve
the concave programming problem. Unfortunately this method was shown to cycle
on some problems by Zwart [14] (recently Meyer [9] has shown that this cycling
does not prevent the algorithm from finding an optimal solution of the problem).
Independently, Bali [1] and Zwart [15] proposed to consider partitioning of cones
instead of covering. The two algorithms differ from each other only wheptimal
solution ¢ > 0) are looked for, but are identical when optimal solution (i.e., with
¢ = 0) are sought. In particular, they both make userefubdivisions, i.e., cones
are subdivided with respect to a pomtof the polytope that is a byproduct of the
deletion test. In 1981, Jacobsen [3] proposed a proof of Bali's algorithm conver-
gence, but unfortunately this proof used a separation property which may not hold
in the general case (see Tuy [12]).

In the meantime, the difficulty in proving the convergence of the conical al-
gorithms was alleviated by modifying the subdivision process. In 1980, Thoai
and Tuy [10] proposed to replaee-subdivisions by bisections, and showed the
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convergence of the resulting algorithm. However, this strategy deteriorates the
computational performances, due to the fact that the bisection process does not
make use of the structure of the problem. This conflict between efficiency and
convergence has been partially solved with the concepbohal subdivisiorin-
troduced by Tuy [13], which consists in usingsubdivisions most of the time, and
bisections occasionally to ensure the convergence. A new proof of the convergence
of the cone partitioning algorithm with a puee-subdivision strategy was first
proposed in [4]. Since then, the nature of the hyperplane that plays a key role in the
proof has been better understood and it has yield to a new simplicial lower bound
that dominates the classical one (see Jaumard and Meyer [5] and Meyer [8]). In
this paper, we give a stronger convergence result than in [4] and propose a shorter
proof that takes into account the recent developments about the hyperplane.

The reader is referred to the book of Horst and Tuy [2] for more details on
conical algorithms and for a description of other methods for solving problem (CP).

The paper is organized as follows. In Section 2, the basic operations for the cone
partitioning algorithm are recalled. In Section 3, the algorithm is described. The
convergence is discussed in Section 4. Conclusions are drawn in the last section.

2. Basic operations

In this section, we discuss the basic operations needed to define the algorithm,
namely the construction of the initial conical partition (Section 2.1), the com-
putation ofy-extensions (Section 2.2), the deletion test (Section 2.3) and-+the
subdivisions (Section 2.4).

2.1. INITIAL PARTITION

The initialization part consists in rewriting the problem (CP) in the following form
(CP) min{f(x)|x € K°N P’

where f is the quasiconcave functio®;° is a polyhedral cone vertexed atand
with exactlyn independent edges, amtl is a polyhedron ofR” containingO in
its interior and such thak® N P’ is bounded.

This can be done in several ways:

1. Choose a non-degenerated veri€xf P (assuming that there exists one) and
perform a change of variable which transformfsinto 0. The conek?® is
defined by the constraints & binding atv® and the polyhedro®’ is obtained
from P by deleting those constraints.

2. Perform a change of variable in such a way thaits an interior point ofP.
Then construct a partition d” into n + 1 cones (see, e.g., Horst and Tuy
[2]). We obtainn + 1 problems of the form{C P’) with P’ = P and where
K is successively each of tle+ 1 cones (these problems are usually solved
simultaneously: see for example [4]).



CONVERGENCE PROOF FOR THE CONE PARTITIONING ALGORITHM 409

In the first case, all optimal solutions of problef@ P’) are also optimal solu-
tions of problem(C P), while in the second case optimal solutions of at least one
problem(C P’) are optimal solutions ofC P).

From now on, we assume thBf = {x € R" | A’x < b’}. Moreover, we will denote

by K = condu?, ..., u"} the polyhedral cone of origi® whose directions are the

n linearly independent vectors, .. ., u”".

2.2. y-EXTENSIONS

In order to define finiter-extensions along the directions on whiglis increasing,
we need to find a bounded convex getontainingO and such that for any cone
K < K°, the hyperplane going through the intersection points of the edg&s of
with the boundary of this set does not intersgah P’. A simplex satisfying those
conditions can be easily constructed. Assume #ais spanned by the vectors
u, u®, .. u®. Solve maxdi_; A | Yi_; 2u% € KON P’} and letA* be the
optimal value. Then define the simplexfase R" [x = }_; 2 ju%, Yk <
A, X > 0} whereA > A*.
We are now able to define theextensions: Let: # 0 be a vector ofR” and
y be a number satisfying < f(0). Defined = maX{a | f(au) > y, au €
C, a > 0}. The pointy = 0u is called they-extension (oD) alongu (the notion
of y-extension was first introduced by Tuy [11], see, e.g., Horst and Tuy [2]).
Note that ify = f(0) and f is decreasing along, the y-extension along is
0. In this papery will always satisfy the conditioy < min{ f(Au) | u € P’, A >
0} (recall thatO is an interior point ofP’), which ensures that the-extension will
always be distinct fronoO.

2.3. DELETION TEST

Let K = condu®, u?, ..., u"} be acone angt < f(0) be a number such that the
y-extensionsy’ = 6,u’ alongu’/, j = 1,2,...,n are distinct fromO. Consider
the following linear problem
LP(P.K,y) maxz A
j=1

’ o) /
st |4 Zk]y =0
Jj=1

A > 0.

Let 5 be its optimal value. Then i < 1, we havex € conv{O, y*,...,y"},
which by quasiconcavity of implies thatf(x) > y forall x in K N P’.

In particular, ify is the best feasible value for the problémpP’) obtained so
far, the cone&K can be eliminated from further consideration since no better feasible
solution can be found in it.
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This deletion test differs from the one originally proposed by Tuy [11] in the
addition of the constraint > 0 in the definition ofLP(P’, K, y).
Given an optimal solution of problemL P(P’, K, y), we return to the-space
by defining
=Y Ayl 1)
j=1

This point ofK N P’ is used in the subdivision process (see Section 2.4) and in the
update of the best known solution (see Section 3). We also define the hyperplane
H={xeR |x=Y"_,x;y/, Y'_ ;= p}and note byxx = 1 its equation.

Now, following [5], consider the dual dE P(P’, K, y):

m
DLP(P,K,y) minzuib;
i=1
o I md'y =1 j=1...n
i=1
u=>0

whered'! denotes théth row of A’, G=1...,m).

Due to the results in linear programming duality (see, e.g., Luenberger [7]), its
optimal value is the same than farP (P, K, y), that isg. Let i be an optimal
solution. Define

i =5 Y ud’ @

and letH be the hyperplane of equatién: = 1. We have the following properties.

PROPOSITION 1.Letx be an optimal solution of problethP (P, K, y). Then
&(ﬁyj) >1 j=1...,n

with equality for allj such thati; > 0.

Proof. The inequalities are a direct consequence of (2) and of the feasibility of
1. Moreover, using the complementary slackness conditions, we have

)N»j<2,tlia/iyj—1)=0, j=1...,n
i=1

which concludes the proof. O
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PROPOSITION 2 [5, Proposition 1The hyperplangd supports the polyhedron
P’ at point®.

Proof.Letx € P’. Thend'x < b fori =1,..., m. Multiplying by /; (which
are nonnegative) and summing, we obtain

m m

A ] N ~
E Hia ' x = E pib; = p.
i=1 i=1

Using (2) we getix < 1, which shows thaP’ is included in the halfspacer €
R | @x < 1}. Now by Proposition 13;a(py’) = A; for j = 1,...,n. Since
>_1A; = p and by (1), we deducéa = 1. 0

COROLLARY 3. There exist9/ > 0such that|a| < M.

Proof. Since H = {x € R | ax = 1) supports P’, the distance
d(0, H) = 1/|&| from O to the hyperplaned is bounded from below by the
distancel (0, § P’) from O to the boundary oP’. This distance is honnull because
O is an interior point ofP’. ChooseM = 1/d(0, § P). O

2.4. w-SUBDIVISION

Let K = congyl, ..., y"} be a cone to be subdivided and t&tbe the point
associated witlk obtained after the application of the deletion test:

n
d=Y iy, r=0.
j=1

LetJ ={j| Xj > 0}. For eachj € J define the con&/ as the coneX in which
the jth edge is replaced by the halflii@®). The conesk’/ (j € J) are called
subcone®f K. It is easy to see that they form a partition of the cdhésee, for
example, Horst and Tuy [2]). This subdivision is referred to asaubdivision.

Note thatay/ = 1/5 for all j in J by Proposition 1, wheré and 5 were
defined in the previous subsection.

3. Cone partitioning algorithm

We now present a cone partitioning algorithm that is very close to Bali’'s modifica-
tion [1] of the original algorithm of Tuy [11]. We show in the next section that this
algorithm provides am-optimal solution of problen{C P’) for anye > 0, i.e., a
pointx € K°N P’ such thatf (x) < f* + ¢ where f* is the exact optimal value of
problem(C P’).

CPw algorithm (cone partitioning viaw-subdivision)
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Step 1 (initialization):initialize the incumbent valuegf and solutionx with the
best point among? and the intersection points of the edgeskdf with the
boundarys P’ of P’. Solve LP(P’,K°, f — &) obtaining an optimal value
(K% and a pointo(K°). If 5(K% < 1, stop:X is ane-optimal solution of
problem(C P’). Otherwise, seif = {K°}.

Step 2 (subdivision)let K* € argmaxXo(K) | K € «£}. SubdivideK* via the point
o(K*) as indicated in Section 2.4. L&t be the set of subcones.

Step 3 (deletion test)or each con&k e £, solveLP(P’, K, f — ¢) obtaining an
optimal valuep(K) and a pointo(K). If 5(K) > 1, addK to L.

Step 4 (updating the incumbenij:for somek € 2, f(@(K)) < f then setf «
f(@(K)); X < o(K).

Step 5 (optimality test)setL <« L\{K*}. If £ is empty, stopx is ane-optimal
solution of problem(C P’). Otherwise return to Step 2.

The main difference with Bali’'s algorithm is that at each iteration we only sub-
divide the cone with largesi instead of all cones of the list. Bali's algorithm
itself differs from Tuy’s covering algorithm by the addition of the constraint O
in the linear progranL P(P’, K, y).

4. Convergence

In [12], Tuy has shown that the boundedness of the sequence of generated vectors
a would imply the convergence of algorithm @PUnfortunately, the hyperplane
H may tend to contain entireli N P’ asK tends to a degenerated cone, in which
case|la|| would not be bounded (see Jaumard and Meyer [5]). In this section, we
show the convergence of algorithm @By reasoning on vectar instead ofx.

Before stating the main Theorem, we prove the following result.

PROPOSITION 4.Let K = condy?, ..., y"} be acone where/, j =1,...,n
are y-extensions for some valye Let® be the point ofk N P’ and H = {x €
R" | @x = 1} be the hyperplane supporting’ that correspond respectively to an
optimal solution of problemg P(P’, K, y) and DLP(P’, K, y), and finally letp
be the common optimal value of these two problems.
Letk’ =condy?, ...,y "}, y, &, H = {x € R" |&@'x = 1} and 5’ be defined
similarly.
If K’ C K andy’ < y, then
~/
1>ad > 2.
. )0 /.
Proof.Let y’ (respectivelyy /) be the intersection point of thgth edge ofK (re-

spectively ofK’) (j =1, 2, ..., n) with the hyperplané? = {x e R"|ax = 1/p}.
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U Y . _— "
Sinceay’ > — =ay’/, j =1,2,...,n by Proposition 1 and definition of thg',
1)

we havey’/ € [Oy/]for j =1,2,...,n. Hence,f(3/) > min{f(0), f(y/)} >y
by quasiconcavity off, and$/ e C for j = 1,2,...,n. By definition 3/ <
H,NK' C H,NK = conv{3', §2,..., 3"}, hencef (37) > min, _; ~x f(X) >y
andy’/ e Cforj=1,2 ..., n.

Recall thaty'/ is the y’-extension along thgth edge ofK’. We distinguish
between two cases depending on whetfiey'/) = y’ or not. In the first case,
since f(37) > y > y’, there exist$3; > 1 such thaty/ = 8;3"/. In the second
case,y’ € §C andy"/ € C, hence again there exists > 1 such thay'/ = ;3.
By definition of@’, we have

§=300 =g, V=0
=1 =1

where}’ is an optimal solution oL P(P’, K, y’). It follows that

@ =) Np;§7 withp; = 1forj=12_.. n
j=1

Sinceay’ = 1/ by definition for all j, it follows that

Finally, since the hyperplang = {x € R" | &x = 1} supportsP’ and@’ € P/, we
have alsaxa®’ < 1. O

Our main result is the following.

THEOREM 5. The CPwalgorithm is correct and can be infinite onlydf= 0. In
this latter case, any cluster poimtof the sequencgp} generated by the algorithm
is an optimal solution of problerC P’).

Note that this result is stronger than that given in [4], where it was showrathat
leastone cluster point of the sequenge} is an optimal solution (in fact this result
was expressed by saying that every cluster point of the seqy&hds a global
minimizer).

In order to prove Theorem 5, denote Ky the cone selected at Step 2 of itera-
tion k and letp* = 5(K*) and&* = &(K*). In addition, letH* = H(K*) = {x €
R" |&*x = 1} be the hyperplane supporti® associated witk*, * be the value
of the best known solution used to compute thextensionsy/*, j = 1,...,n

that define the linear program solved for cdag and?k = f(x*) the value of the
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best known solution at iteratiok If the algorithm stops at iteratio, x" is an

e-optimal solution of probleniC P') since f(x) > f — & for all x in K°N P’
Hence, assume that the algorithm is infinite. Siadee K° N P/, y/* € C

for j =1,2,...,nandO e int P/, the sequencego’}, {y*},j = 12,....n

and {a¢*} are bounded (for the boundedness{@f}, see Corollary 3). Since the

sequence{?k} is nonincreasing and bounded from below by pjnq~p f(x), it

converges to a Iimi?*. On the other hand, taking into account the selection rule of

Step 2 and thab does not increase when going from a cone to one of its subcones

(see Proposition 4), we obtain that the sequei¢¢ is nonincreasing. Moreover

as it is bounded from below by 1 (because cones satisfying 1 are eliminated

at Step 4), it goes to a limp* > 1.

PROPOSITION 6. The CPwalgorithm can be infinite only i = 0. Furthermore

we havep* = 1and f(w) = f

Proof. Let {&"} be a subsequence @b} converging taw. Since each cone is
subdivided into a finite number of subcones, there is at least one sequéhicef
nested cones (i.e., satisfyidf 1 < K4 for all ¢) such tha{g} is a subsequence of
{k,}. Complete{g} to obtain a sequendeé} such thatk”** is a subcone ok for
all h. Then{q} is a subsequende;,} of {1} andw = lim,, _, -, @". Denote byi, the
index of the edge ok replaced by the halfline passing througthin the subdivi-
sion procedure. Note that' 5" yi»" = 1 by definition of the subdivision procedure
and Proposition 1. Lep be an integer such thaf = i for infinitely many#;. Let
{he} = {h | iy = io}. We havef (yioh+1) = yhs — g < F" — ¢ or yioh1 e 5C,
andy©+1 = g,»" with 6, > 1 for all t. Moreover,g"+1 g1yl = 1 j.e.,

&h1+115h1+19t5)hz =1 ©)

Let {z,} be a subsequence @gf such tha'« — @, 6, — 6 anda"«+ — & (i.e.,
{h,,} is a subsequence ¢f,}).

By Proposition 4, sinc&’« C K"u-1+1 we have
ﬁhlu

1 > &h‘ufl'*'l(:(w)ht“ > .
- ﬁhzu,ﬁl

(4)

Taking the limit in (3) and (4), and sing& — p*, we obtainép*fw = 1 = dw
which shows thap*d = 1. Sincep* andf are both greater than or equal to 1, we
deducep* = 6 = 1. By continuity of £, we have then thaf @) < f — & (note
thatw € 8C is impossible by definition of the convex s€). But we have also
f@" = F", which implies f@) > 7. This is possible only it = 0, in which
casef(@) = [ . O

We are now able to prove Theorem 5.
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Proof of Theorem 5We have already shown that if the algorithm is infinite, at
least an infinite sequence of cones is generated by the partitioning procedure and
that this is possible only i = 0. Moreover, the sequené¢g”} converges to 1 and

the sequencér’ ) to 7~ = f(%). It remains to show that " is the optimal value of
problem(C P’).
Assume by contradiction that there existse K° N P’ such thatf (x') < f .
Let {K*} be a sequence of cones generated by the subdivision procedure, that
containx’ (note that there may be several such sequenceshi&longs to a face
of a cone). The sequen¢&**} is infinite. Indeed, if it were finite, leK*¥ be the
last cone containing’. There are two possibilities: eithéf*~ is never selected
to be subdivided, in which case® > 5" > 1 for k > ky, in contradiction
with the fact thato* tends to 1. OK*~ is eliminated, which implies thaf (x") >

min,_gixnp £(6) = £ = F, in contradiction with the assumptiof(x") < I

Letj*“ be the intersection ofx” with the hyperplanéf" = {x € R" |&"'x =
1/p%}: then f(3"%) > y* as3™ belongs tok* N A% = conviy, ...y}
wherey/*n j =1,..., n are they*-extensions. Let* be the?‘;extension ofr’
(note thaty* € [Ox] with x’ € intC). Sincef(3%) > y* > 7" = f(y*) >
f(x) and by quasiconcavity of, we have|x’|| > |y*|| > [3*||. Moreover,
sincex’ € K* N P’, we have|x’|| < 5% |3"*|. Hence,

x/ x'
oz VI I
Iy el = Nyl

But {5*} tends to 1 as a subsequencd &f}, hence a contradiction. We conclude
that there cannot exist € P’ such thatf(x’) < f , and hence thaf" is an
optimal value of probleniC P’). O

This convergence result can be easily extended to the branch-and-bound variant
of this algorithm (see [4]).

5. Conclusion

In this paper, we have given a simplified proof of the convergence of the cone
partitioning algorithm withw-subdivision. This new proof benefits from the insight
gained on a new class of hyperplanes and its associated cut/lower bound, developed
in an other paper [5]. It is shown that the cone partitioning algorithm is finite when
g-optimal solution are looked for with > 0, but only infinite convergence could
be shown in the case whese= 0. No example is known in which the algorithm is
infinite, therefore the true status of the cone partitioning algorithm is still an open
guestion when an exact optimal solution is sought.

We heard recently about an independent proof of the result given in this paper
for the case > 0 by Locatelli [6].
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